
IDTchecker: Rule-based Integrity Checking of Interrupt Descriptor

Tables in Cloud Environments

Irfan Ahmed, Aleksandar Zoranic, Salman Javaid, Golden G. Richard III, Vassil Roussev

Department of Computer Science, University of New Orleans,
Lakefront Campus, New Orleans, LA 70148, United States

(irfan.ahmed, azoranic, sjavaid1)@uno.edu, (golden,vassil)@cs.uno.edu

Abstract

An interrupt descriptor table (IDT) is used by the processor to transfer the execution of a
program to special software routines that handle interrupts, which might be raised during
the normal course of operation by hardware or to signal exceptional conditions, such as a
hardware failure. Attackers frequently modify the pointers in the IDT in order to execute
malicious code. In this paper we present IDTchecker, which provides a comprehensive rule-
based approach to check the integrity of the IDT and the corresponding interrupt handling
code, based on a particular scenario commonly found in cloud environments. In this scenario,
multiple virtual machines (VMs) run the same version of an OS kernel, which implies that
IDT related code should also be identical across the pool of VMs. IDTchecker uses this
scenario to compare the IDTs and the corresponding interrupt handlers across the VMs
for any inconsistencies, based on a pre-defined set of rules. We thoroughly evaluate the
effectiveness and runtime performance of IDTchecker and find that it can detect any change
in the IDT or interrupt handling code without having any significant impact on a guest
VMs’ system resources. Moreover, IDTchecker itself has a very small memory footprint (i.e.
10-15MB).

Keywords: Cloud Computing, Virtualization, Malware, Interrupt Descriptor Table, Forensic Analysis

1. Introduction

Memory forensics involves extracting digital artifacts from the physical memory of a
computer system. The computer’s Interrupt Descriptor Table (IDT) is one such artifact,
which is a well-known target for malware (especially rootkits). The IDT provides an efficient
way to transfer control from a program to an interrupt handler, which is a special software
routine, to handle exceptional conditions occurring within the system, processor, or currently
executing program. For instance, hardware failure and division by zero are two unusual
conditions that are handled through the IDT. Malware manipulates the IDT in order to
change the system’s control flow and run malicious code. The changes may occur either to
the pointer in the IDT or in the interrupt handler itself, to redirect execution to malicious
code that has been injected into the system.

A state of the art solution [1] [2] checks the integrity of IDT by keeping a valid state
of the table and comparing it with the table’s current state. For instance, Microsoft (MS)

introduces kernel patch protection (a.k.a., PatchGuard) [2] in 64-bit MS Windows to detect
any modifications in kernel code and certain critical data structures including the IDT.
PatchGuard caches the legitimate copy and the checksum of the IDT, then compares them
with the current IDT in memory to check for any modifications. Similarly, another tool,
CheckIDT [1], examines the integrity of the IDT by storing the entire table in a file so
that it can be compared later with the current state of the table in memory. Despite these
approaches being applicable to different operating systems, they still suffer at least two major
limitations:

• They require an initialization phase where it is assumed that the IDT is not infected
at the time the valid state of the IDT is obtained. This may not be the case especially
if the interrupt handler is patched in the kernel file on disk because when the system
restarts and the IDT is created, the IDT will point to the malicious interrupt handler
before the valid state of the IDT can be obtained. The pointers in the IDT may change
after the system boots if the kernel or kernel modules are loaded at different memory
locations. Thus, every time the system restarts, such approaches need to record the
valid state of the table.

• Current solutions do not specifically consider the interrupt handler’s code for integrity
checking. Although they do check the integrity of the entire kernel code and modules
that also include interrupt handler’s code, they do not ensure that the pointer in the
IDT points to a valid interrupt handler. A state of the art solution for checking the in-
tegrity of kernel code (and modules) requires maintaining a dictionary of cryptographic
hashes of trusted code [3] [4], which compares the hash of the current code with the
one stored in the dictionary. Such an approach requires maintaining the dictionary
across every kernel update for effective integrity checking.

In this paper, we propose IDTchecker, which provides a comprehensive, rule-based ap-
proach to check the integrity of the IDT in real time without requiring an initialization phase,
a “known good” copy of the IDT, or a dictionary of hashes. IDTchecker works in a virtu-
alized environment where a pool of virtual machines (VMs) run identical guest operating
systems with the same kernel version - a typical scenario in cloud servers. Such pools of vir-
tual machines are maintained to simplify the maintenance process so that applying patches
and upgrading systems can be automated. IDTchecker works by retrieving the IDT and
its corresponding interrupt handler code from the physical memory of the guest VM and
comparing them across the VMs in the pool. It uses a pre-defined set of rules to perform
comprehensive integrity checking. IDTchecker runs on a privileged virtual machine where it
has access to a guest VMs’ physical memory through virtual machine introspection (VMI).
None of its components run inside the guest VMs, which makes IDTchecker more resistant
to tampering by malware.

We performed extensive evaluation of IDTchecker in terms of effectiveness and efficiency.
We used real-world malware and popular IDT exploitation techniques to modify the IDT and
its corresponding interrupt handler code, all of which are successfully detected by IDTchecker.
We analyzed the runtime performance of IDTchecker during best and worst case scenarios.
Our results show that IDTchecker does not have any significant impact on a guest VMs’
resources, since none of its components run inside the VMs. Its memory footprint is around

2

10-15MB, which is quite negligible as compared to the size of physical memory typically
found in a cloud server (tens to hundreds of gigabytes).

The paper is organized as follows: Section 2 presents related work. Section 3 provides an
overview of the IDT and describes IDTchecker’s architecture in detail. Section 4 describes
the IDTchecker’s implementation followed by the evaluation in section 5 and conclusion in
section 6.

2. Related work

There has been relatively little work done on IDT integrity checking; this section presents
a brief summery.

Kad proposes CheckIDT [1] a Linux-based tool that is able to detect any modification
in the IDT by storing the IDT descriptor values in a file and later comparing it to the
current state of the IDT in memory. If any discrepancy between the state of the two tables
is detected, CheckIDT can restore the table in memory by copying the IDT values from the
file, assuming that the file’s integrity is still intact. In order to access the in-memory table,
CheckIDT uses Sd et al.’s technique [5] on /dev/kmem that allows CheckIDT to access the
table from user space without using a Linux kernel module.

Kernel Patch Protection [2] (or PatchGuard) is an approach that checks the integrity
of kernel code (including modules) and important data structures such as the IDT, Global
Descriptor Table (GDT), System Service Descriptor Table (SSDT) and syscalls table. It is
currently introduced by Microsoft in 64-bit Windows operating systems. PatchGuard stores
a legitimate known-good copy and checksum of kernel code and data structures and compares
them with the current state of the code and the data structures at random intervals of time.
It is implemented as a set of routines, which are protected in the system by using anonymity
techniques such as misdirection, misnamed functions and general code obfuscation.

Volatility [6] has a plugin [7] that checks the integrity of the pointers to interrupt
handlers in the IDT. It walks through each entry in the IDT and checks whether the pointer
in the entry is within the address range of the kernel code (including modules). It ensures
that the pointers do not point to an unusual location in memory, however, it cannot detect
attacks [1] [8] that do not require modifying a pointer in the table, but instead directly patch
interrupt handler code.

IDTGuard [9] is an MS Windows-based tool, which checks the integrity of pointers in
the IDT. It separately computes the pointer values of the IDT by finding the offset of the
interrupt handler in the kernel file (such as ntoskrnl.exe) and adds it to the base address
of the kernel in memory. The computed values are then matched with the pointers in the
IDT table for integrity checking. However, this tool cannot check the integrity of pointers
corresponding to kernel modules where the pointers point to Kinterrupt data structures,
instead of the interrupt handler in the kernel code.

3. IDT Integrity Checking

With increases in computational power and physical memory, a physical machine can
easily accommodate the computational needs of more than one average user at a time. Vir-
tualization provides an opportunity for efficient resource utilization of a physical machine

3

by concurrently running several VMs over a virtual machine monitor (VMM) or hypervisor
– an additional layer between hardware and hosted guest operating systems. The VMM
also allows a privileged VM to monitor the runtime resources of other (guest) VMs, such as
memory, I/O, disk etc., through virtual machine introspection - an approach that facilitates
building more robust security tools for the environment. IDTchecker uses introspection while
running in a privileged VM to access the physical memory of guest VMs, retrieves the IDTs
and their corresponding interrupt handlers and matches them (according to the pre-defined
set of rules) in order to check for any inconsistencies.

3.1. Overview of the IDT

Interrupts and exceptions are system events that indicate that a condition or an event
requires the attention of a processor [10]. Interrupts can be generated in response to hardware
signals such as hardware failure or by software through INT n instruction. Exceptions are
generated when the processor detects an error during the execution of an instruction such as
divide by zero. Each such condition indicated by an interrupt or exception requires special
handling by the processor and thus, is represented with a unique identification number, which
is referred to as an interrupt vector. (In this paper, the difference between interrupts and
exceptions is not important and thus we refer to both of them as interrupts.) When an
interrupt occurs, the current execution of a program is suspended and the control flow is
redirected to an interrupt handler routine through IDT.

An IDT is an array of interrupt vectors where each vector provides an entry point to an
interrupt handler. There can be at most 256 interrupt vectors. Each vector is represented
by 8 bytes, containing the information about the index to a local/global descriptor table,
request/descriptor privilege levels, offset to interrupt handler etc. There are up to three
types of interrupt (vector) descriptors in an IDT: interrupt gate, trap gate and task gate.
Interrupt and trap gate descriptors are similar, but they differ in the functionality and the
type field in the descriptor that identifies the gate. Unlike for trap gates, the processor, while
processing an interrupt gate, clears IF flag in the EFLAGS register in order to prevent other
interrupts from interfering with the current interrupt handler. Task gate descriptors, on the
other hand, have no offset value to the interrupt handler. This handler is reached through
the segment selector field in the descriptor.

The Global Descriptor Table (the GDT)1 is utilized when the interrupt handler needs
to be accessed in protected mode (where protection ring [10] is enforced). An entry in the
table is called segment descriptor. Each descriptor describes the base address and the size
of a memory segment along with the segment’s access rights information. Each descriptor
is also associated with a segment selector that provides the information about the index to
the descriptor, access rights and a flag to determine whether the index points to an entry of
the global descriptor table. Each interrupt vector has a segment selector that is used to find
the base address of the segment. In case of interrupt and trap gates, the base address of the
interrupt is obtained by adding segment’s base address to the offset in the vector.

1The Local Descriptor Table (LDT) is also used to access the interrupt handler. However, this usage is
beyond the scope of this paper.

4

Table-Extractor

Code-Extractor

(Rule-Based)
Integrity-Checker

IDTchecker

Privileged VM

Virtual Machine Monitor

Hardware

Info-Extractor

Virtual Machine
Introspection

Window XP (SP2)

RedHat

Window 7

Pools of Guest VMs

.

Figure 1: IDTchecker Architecture

3.2. Assumptions

We assume a fully virtualized environment where the VMM supports memory introspec-
tion of guest VMs, and that there exist different pools of VMs where each pool runs an
identical guest operating system with the same kernel version. This provides an opportunity
for IDTchecker to probe and compare the IDTs and interrupt handlers within each pool.

3.3. IDTchecker architecture

The basic idea behind IDTchecker is to obtain the IDTs and corresponding interrupt han-
dler code from a pool of VMs and perform a comprehensive integrity check based on a pre-
defined set of rules. To achieve this task, we have divided the IDTchecker into four modules
that accommodate different functions of IDTchecker needed during the entire process of in-
tegrity checking. The four components are Table-Extractor, Code-Extractor, Info-Extractor
and Integrity-Checker.

• Table-Extractor & Code-Extractor: We define separate modules (Table-Extractor
and Code-Extractor) for extracting tables and interrupt related code because the struc-
ture of the tables (IDT and GDT) are dependent on the processor while the organization
of the interrupt related code in the system is mostly dependent on the operating system.
For instance, MS Windows uses a Kinterrupt structure to store the information about
an interrupt handler that is provided by kernel drivers. Having extraction of code and
table into two separate modules increases the portability of IDTchecker. Moreover,
Code-Extractor receives interrupt vector descriptor values from Table-Extractor after
the descriptor is parsed, which Code-Extractor needs to find the index of the GDT
segment and offset of interrupt handler (if the descriptor type is not a task gate).

• Info-Extractor: The Info-Extractor module is used to fetch any additional informa-
tion from memory, such as the address range of kernel modules. Such information
might be required by a rule to assess some aspect of the IDT or the interrupt handling
code.

5

• Integrity-Checker: The Integrity-Checker module is used to apply a pre-defined set
of rules on the data obtained from the last three modules in order to comprehensively
check the integrity of the IDT. Unlike the other three modules, Integrity-Checker does
not need to access the memory of guest VMs, since all necessary data is already made
available by other modules.

Figure 1 illustrates the overall architecture of IDTchecker in a typical setting where
IDTchecker would be effective. It shows different pools of guest VMs where each pool is
running the same version of a guest operating system. The VMs are running on top of a
VMM, and the VMI facility is available for privileged VMs to introspect the guest VMs’
system resources. To clarify several points, IDTchecker only needs to perform read-only
operations on the guest VMs’ physical memory and no component of the IDTchecker runs
inside the guest VMs.

Discussion: Given that IDTchecker can compare IDTs and their corresponding inter-
rupt handler code across VMs, it is able to detect any inconsistency in the IDT among VMs.
We can use a majority voting algorithm to determine which VM has been infected. However,
the majority vote can only be effective if the majority of VMs have uninfected IDTs. In
this case, IDTchecker is more effective in detecting the first sign of infection, which can then
be used to trigger a thorough forensic investigation in order to find the root cause of the
infection.

It is also worth discussing whether the IDT should always be identical across VMs when
identical kernel code (including modules) is running. The initial 32 interrupt vectors (i.e.
0 to 31) are pre-defined. These interrupt vectors will always remain identical across VMs.
However, other interrupt vectors (from 32 to 255) are user-defined and may vary across VMs
in that the same interrupt entry or descriptor can be associated with different interrupt
vectors across VMs. Thus, one-to-one matching of such interrupt entries may not be feasible
at all the times. A more robust approach is to find the equivalent interrupt vector entry
(that is being matched) in other IDT tables across VMs before rules are applied to them.
Moreover, the current version of IDTchecker does one-to-one matching and can further be
improved with this approach.

3.4. Rules for integrity checking

IDTchecker currently uses four rules to perform integrity checking across VMs and within
each VM:

Rule 1: All the values in each interrupt vector should be the same across VMs (excluding
the interrupt handler offset field, which is checked for integrity by the subsequent set rules).
This rule ensures that the fields in the IDT are original.

Rule 2: The interrupt handler code should be consistent across VMs. This rule detects
any modification in the code. The rule is effective in detecting the modifications, unless the
identical modification is done across all VMs in the pool.

Rule 3: The interrupt handler is located either in basic kernel code or a kernel module.
This means, the base address of interrupt handler should be within the address range of
either basic kernel code or any module’s code. This rules ensures that the base address is
not pointing to an unusual location.

6

Rule 4: Given that the base address of an interrupt handler is within the address range
of the kernel code or any module, the offset of the base address of the interrupt handler
from the starting address of its corresponding driver or basic kernel code should be the same
across all virtual machines. This rule detects instances of random injections of malicious
code within a driver or the basic kernel code.

4. Implementation

IDTchecker’s design is simple in that all its components reside locally on a privileged
VM, which can be implemented on any VMM that has introspection support (such as Xen,
KVM or VMware ESX) without requiring modifications to the VMM itself. For the proof
of concept, we developed IDTchecker on Xen [11], with MS Windows (Service Pack 2) XP
guest operating systems and used the LibVMI introspection library [12]. We also used Opdis
[13] (a disassembler library) and OpenSSL [14] (for computing cryptographic hashes).

The rest of the section describes the low-level implementation details of the components
of IDTchecker.

4.1. Table-Extractor

The IDT and GDT are created each time a system starts. The processor stores their base
address and size in IDTR and GDTR registers for protected mode operations. In each register
the base address specifies the linear address of byte 0 of the table, while the size specifies the
number of bytes in the table. Table-Extractor obtains this information from the registers
in the guest VM and extracts the IDT and GDT tables from the guest VM’s memory. It
further interprets the raw bytes of the tables as table entries and their respective fields, then
forwards them to the Code-Extractor.

4.2. Code-Extractor

After receiving the tables from the Table-Extractor, Code-Extractor retrieves the code
corresponding to each IDT entry. The process of Code-Extraction varies with the interrupt
vector type (i.e., interrupt gate, task gate, trap gate), thus, we discuss the process for each
type separately. In the Windows XP VMs we used, we found no trap gate entries in the IDT.
Thus, in this section, we only discuss interrupt gates and task gates. We also found that
most vectors in Windows XP’s IDTs are interrupt gates except for three task gate vectors.

4.2.1. Interrupt gate

Each interrupt gate entry in the IDT has a segment selector associated with the GDT.
It also has an interrupt handler offset that can be added to the base address of the segment
described in the GDT to form the base address ptr of the interrupt handler. The interrupt
handler can be located either in the basic kernel code (i.e. ntoskrnl.exe for Windows XP)
or in a kernel module. If the interrupt handler is in a kernel module, ptr then points to
the Kinterrupt data structure, which is a kernel control object that allows device drivers to
register an interrupt handler for their devices. It contains information that the kernel needs
to associate the interrupt handler with a particular interrupt, such as the base address of the
interrupt handler in the module, vector number of the IDT entry etc. In order to determine
whether the handler code is in a kernel module, we match the vector number in Kinterrupt

7

. . .
Maximum entries: 256

. . .

Vector number: 0

1

2

Interrupt Descriptor Table

P DPL TYPE 0 0 0 RESERVEDSEGMENT SELECTOR

INTERRUPT HANDLER OFFSET

. . .
Maximum entries: 8191

. . .

0

1

2

Global Descriptor Table

3

SIZE BASE ADDRESS

GDTR register

SIZEBASE ADDRESS

IDTR register

3

+

ptr

If α == vector
number

α = ptr + <offset to
vector number field

in Kinterrupt>

ptr

No

Segment

iret/ret

Handler Code

ptr

Yes

- - -
- - -
- - -

Jmp DispatchAddress

. . .
ServiceRoutine

. . .
DispatchAddress

Vector

. . .
DispatchCode

Kinterrupt

Ntoskrnl.exe

iret/ret

Call ServiceRoutine

Handler Code

Kernel Module

iret/ret

Handler Code

ACCESS BYTE SEGMENT LIMIT

BASE ADDRESS

0 0G S

Handler Code

Figure 2: Code extraction of Interrupt gate. (The GDT/IDT descriptor format is adjusted for illustration
purposes.)

structure with the vector number of the IDT entry. If matched, the handler code is in the
kernel module; otherwise it is in the basic kernel.

At this stage, Code-Extractor needs to find the base address and size of all the interrupt
handling code in order to make a clean extraction of the code. Figure 2 illustrates the entire
extraction process.

• Finding the base address: When the code is located in the basic kernel, ptr contains
the base address of the interrupt handler which is the only code needed for integrity
checking. When the code is in a module, ptr points to DispatchCode, which executes
and at some stage jumps to another code (InterruptDispatcher). This code further
executes and at some stage calls the interrupt handler from the device driver. In this
case, we have to extract three chunks of code. The base addresses of all the three pieces
of code are in the Kinterrupt structure, which Code-Extractor processes to obtain the
base addresses.

• Finding the code size: Code-Extractor finds the size of the code by disassembling it
starting from the base address of the code, assuming that the first occurrence of a return
instruction points to the end of the code. This assumption is valid through function
prologue and epilogue convention, which is followed by assembly language programmers

8

and high language compilers. These are a few lines of code placed at the start and end
of the function, which store the state of the stack and registers when the function is
called and restore them at the time when function returns. Thus, a return instruction is
required at the end of the function in order to ensure that the restoration code executes
before function returns. We have not encountered situations where returns in interrupt
handler code occur before the end of the handler. Furthermore, we performed a simple
experiment to see if the Windows Driver Model (WDM) compiler strictly follows the
function prologue and epilogue convention. We placed a few return instructions between
the if-else statements in the interrupt handler code of a hello-world driver. When we
compiled it, we found that the return instructions were replaced with jump instruction
pointing to a return instruction placed at the end of the code. This shows that the
WDM compiler follows the convention upon which our heuristic relies.

4.2.2. Task gate

Each (task gate) entry in the IDT has no interrupt handler offset, and therefore there
is no direct pointer to any handler or code. Instead, the segment selector in the entry has
the index of a GDT entry. The GDT entry is a task state segment (TSS) descriptor, which
provides the information about the base address and the size (i.e., the segment limit) of a
task state segment (TSS). The TSS stores the processor state information (such as segment
registers and general-purpose registers etc.), which is required to execute the task. TSS
contains the code segment (CS) that points to one of the descriptors in the GDT that defines
a segment where the interrupt handler code is located. TSS contains the instruction pointer
(EIP) value, as well. When a task is dispatched for execution, the information in TSS is
loaded into the processor and the task execution begins with the instruction pointer (EIP)
value, which provides the base address of the interrupt handler.

Once we have the base address of the interrupt handler, we use the same method that we
used for interrupt gate to find the size of the code. When we disassemble the code, the first
occurrence of the return instruction we considering to be the end of the interrupt handler
code. Figure 3 illustrates the entire extraction process.

4.3. Info-Extractor

Info-Extractor is a generic module used to obtain any additional information associated
with the IDT and its code and make it available to the Integrity-Checker. We use it to
obtain the address range of the basic kernel and its associated modules that Integrity-Checker
requires for Rule 3 and Rule 4. Info-extractor also takes into consideration other modules
already loaded in memory.

Windows XP maintains a doubly linked list corresponding to locations of the basic ker-
nel code and modules, where each element in the list is a LDR DATA TABLE ENTRY data
structure containing the base address DllBase and the size of the module SizeOfImage.
Windows XP also stores the pointer to the first element of the list in a system variable
PsLoadedModuleList, which Info-Extractor uses to reach the list, browse each element and
store it into a local buffer. The pointer to the buffer is then forwarded to the Integrity-
Checker. Figure 4 shows the doubly linked list.

9

. . .
Maximum entries: 256

. . .

Vector number: 0

1

2

Interrupt Descriptor Table

. . .
Maximum entries: 8191

. . .

0

1

2

Global Descriptor Table

. . .

SIZEBASE ADDRESS

GDTR register

SIZEBASE ADDRESS

IDTR register

3

Segment

iret/ret

Handler Code

ACCESS BYTE SEGMENT LIMIT

BASE ADDRESS

0 AG 0

P DPL TYPE 0 0 0 RESERVEDSEGMENT SELECTOR

INTERRUPT HANDLER OFFSET

ACCESS BYTE SEGMENT LIMIT

BASE ADDRESS

0 AG 0

TSS

CS

EIP

- - -

- - -

- - -

Figure 3: Code extraction of task gate. (The GDT/IDT descriptor format is adjusted for illustration pur-
poses.)

4.4. Integrity-Checker

Integrity-Checker applies the rules to the data obtained from the last three modules.
However, sometimes it needs to also manipulate the data in order to apply the rules. This
section discusses both aspects of this component corresponding to each rule.

Rule 1: This rule compares IDTs across VMs. Integrity-Checker does this by comparing
each value of every IDT entry across VMs. However, this does not include interrupt handler
offsets.

Rule 2: This rule compares the interrupt handler code across VMs. At this stage,
Integrity-Checker already has the handler code obtained by the Code-Extractor. However,
since the code has been extracted from the memory of different VMs, it may not always be
matched as is. This is because the code of the basic kernel and its modules in files have
relative virtual addresses (RVAs) or offsets. When a module is loaded into memory, the
loader replaces the RVAs with absolute addresses by adding the base address of the module

10

LDR_DATA_TABLE_ENTRY

InLoadOrderLinksInLoadOrderLinks

FLINK FLINK FLINK

BLINK BLINK BLINK

InLoadOrderLinks

LDR_DATA_TABLE_ENTRY

PsLoadedModuleList

LDR_DATA_TABLE_ENTRY

DllBase

SizeOfImage
- - -

- - -

- - -

DllBase

SizeOfImage
- - -

- - -

- - -

DllBase

SizeOfImage
- - -

- - -

- - -

Figure 4: Doubly linked list of kernel modules

A) VM1 – Before RVAs modification B) VM2 – Before RVAs modification

C) VM1 – After RVAs modification D) VM2 – After RVAs modification

00000000| 6a 18 68 a8 d7 7d f8 e8 ff 00 00 00 8b 7d 0c 8b j.h..}.......}..

00000010| 77 28 83 7e 30 01 0f 85 4f 01 00 00 a1 00 d9 7d w(.~0...O......}

00000020| f8 ff b0 a4 00 00 00 ff 15 0c d9 7d f8 88 45 df }..E.

00000030| 24 21 33 db 3c 01 0f 85 f3 19 00 00 8d 45 e3 50 $!3.<........E.P

00000040| 6a 01 e8 18 ff ff ff 8d 86 4a 01 00 00 8a 08 88 j........J......

. . .

. . .

00000210| 0f 85 ed 00 00 00 e9 b1 00 00 00 8b 08 8b 91 f4

00000220| 01 00 00 89 50 08 8b P..

MD5: fcd7298fa2a2f3f606c997ecd8c90392

00000000| 6a 18 68 a8 d7 7b f8 e8 ff 00 00 00 8b 7d 0c 8b j.h..{.......}..

00000010| 77 28 83 7e 30 01 0f 85 4f 01 00 00 a1 00 d9 7b w(.~0...O......{

00000020| f8 ff b0 a4 00 00 00 ff 15 0c d9 7b f8 88 45 df {..E.

00000030| 24 21 33 db 3c 01 0f 85 f3 19 00 00 8d 45 e3 50 $!3.<........E.P

00000040| 6a 01 e8 18 ff ff ff 8d 86 4a 01 00 00 8a 08 88 j........J......

. . .

. . .

00000210| 0f 85 ed 00 00 00 e9 b1 00 00 00 8b 08 8b 91 f4

00000220| 01 00 00 89 50 08 8b P..

MD5: 5e87703b1a42456c4928b6cc60b8ea96

00000000| 6a 18 68 13 33 00 00 e8 ff 00 00 00 8b 7d 0c 8b j.h..}.......}..

00000010| 77 28 83 7e 30 01 0f 85 4f 01 00 00 a1 6b 34 00 w(.~0...O......}

00000020| 00 ff b0 a4 00 00 00 ff 15 77 34 00 00 88 45 df }..E.

00000030| 24 21 33 db 3c 01 0f 85 f3 19 00 00 8d 45 e3 50 $!3.<........E.P

00000040| 6a 01 e8 18 ff ff ff 8d 86 4a 01 00 00 8a 08 88 j........J......

. . .

. . .

00000210| 0f 85 ed 00 00 00 e9 b1 00 00 00 8b 08 8b 91 f4

00000220| 01 00 00 89 50 08 8b P..

MD5: 3925130249749612de2cbd3fc8a6182b

00000000| 6a 18 68 13 33 00 00 e8 ff 00 00 00 8b 7d 0c 8b j.h..}.......}..

00000010| 77 28 83 7e 30 01 0f 85 4f 01 00 00 a1 6b 34 00 w(.~0...O......}

00000020| 00 ff b0 a4 00 00 00 ff 15 77 34 00 00 88 45 df }..E.

00000030| 24 21 33 db 3c 01 0f 85 f3 19 00 00 8d 45 e3 50 $!3.<........E.P

00000040| 6a 01 e8 18 ff ff ff 8d 86 4a 01 00 00 8a 08 88 j........J......

. . .

. . .

00000210| 0f 85 ed 00 00 00 e9 b1 00 00 00 8b 08 8b 91 f4

00000220| 01 00 00 89 50 08 8b P..

MD5: 3925130249749612de2cbd3fc8a6182b

Figure 5: Relative virtual address (RVA) modification on interrupt handler
(i8042prt!I8042KeyboardInterruptService), associated with interrupt vector 0x31. The module’s
(32-bit) base address for virtual machines VM1 and VM2 are F8 7B A4 95’ and F8 7D A4 95’.

(i.e. the pointer to the 0th byte of the module in memory) with RVAs. If the same module is
loaded at different locations across VMs, the kernel/module’s code (including the interrupt
handler in the code) will have different absolute addresses and as a result is not consistent
and will not be matched as is. Integrity-Checker reverses this change (using equation 1) by
subtracting the absolute addresses in the code with their respective base addresses of the
modules. This brings the absolute addresses back to RVAs, which represent the values in
files and should be the same across VMs.

RV A = Absolute address (in the code) − Base address (of Kermel or Module) (1)

Figure 5 illustrates the RVAs modification. It shows the same interrupt handler code
extracted from the physical memory of two virtual machines. Integrity-Checker assumes
that the differences of bytes in the code represent the absolute addresses. This assumption
is valid until the code in any of the VMs is modified since the base address of the module
where the handler is located is different in both the VMs. There should be a difference of

11

4 bytes on a 32-bit machine. Depending on where the difference of bytes starts in the base
address of the module in the two VMs, this may not always be the case.

Discussion: At this time, Integrity-Checker considers only the interrupt handler code
for integrity checking, which is sufficient unless routines called by the handler are patched
with malicious code. In this case, the integrity of the IDT is violated, even though the IDT
table and its related interrupt handler code is still intact. Instead of finding such routines
and checking their integrity, it is more efficient to check the integrity of the entire module
where handler code is located. This may also include the routines that are not being called,
however this approach still can save the parsing time to search for the calling functions.
There are several existing techniques that check the integrity of entire modules [4][15] [16]
[17] [18] [19] [20].

Rule 3 & Rule 4: Rules 3 and 4 check the base address of the interrupt handler
code within the address range of kernel modules and check the offset of the handler’s base
address from the base address of its respective module. Integrity-Checker has the list of
kernel modules (along with their address ranges) where the address ranges are exclusive and
not overlapped. It searches the base address of interrupt handler to figure out whether it is
within the address range of any module. Integrity-Checker uses binary search that requires
the module’s list to be sorted according to the base address. Moreover, merge sort is used for
sorting. When the handler’s base address is found within the address range of a module, the
module is considered to be a holder of the interrupt handler. The module’s base address is
further used to compute the offset between the base addresses of the module and the handler,
which is then matched across VMs.

5. Evaluation

We performed several experiments to evaluate the effectiveness and efficiency of the
IDTchecker; the results are presented in this section.

5.1. Experimental settings

We built a small-scale cloud server for performing the experiments. The server had Xen
4.1.3 running on Intel core 2 Quad (4 * 2.83GHz cores) and 8GB RAM. We ran 7 VMs
(i.e., DomUs) using Xen. Each VM had 1GB RAM, 10GB Hard Disk and was running MS
Windows XP (Service Pack 2) using hardware-assisted virtualization (HVM). The privileged
VM (i.e. Dom0) was running Fedora 16 (3.4.9-2.fc16.x86 64 kernel).

5.2. Integrity checking

IDTchecker is designed to detect any integrity violation within the IDT and its corre-
sponding interrupt handlers. This section discusses the experiments that violate the IDT
integrity, and whether IDTchecker is able to detect them. These experiments also include
real-world malware that manipulate the IDT to run malicious code.

5.2.1. Hooking an interrupt

As discussed earlier, each descriptor in the IDT has a (32-bit) pointer that either points
to an interrupt handler or the Kinterrupt structure. It is formed from the two (16-bit) fields
in the descriptor, which are the lower and higher 16-bits of the pointer address. There are

12

techniques [1] that exploit this pointer in order to redirect the control flow to a malicious
code. For instance, while modifying the pointer, the technique stores the original pointer,
which is then restored after the (malicious) code has executed. Moreover, a jump instruction
is added to the (malicious) code that jumps to the original code after the malicious code
is executed. This technique runs both the malicious and original code to support normal
system operation.

In this experiment, we modified the pointer in the IDT in order to check whether IDTchecker
could detect the modification. We used IDTGuard [9] for making this modification by using
an implicit malfunctioning behavior of this tool. As discussed in the related work, this tool
is designed to check the integrity of the IDT by separately computing the pointer values and
comparing it to the one in the IDT. However, the computation is only possible when interrupt
handlers are located in the kernel code (i.e. ntoskrnl.exe). When IDTGuard computes the
pointer value that points to Kinterrupt structure (because the interrupt handler is in kernel
module), it computes a pointer value of a random location in a kernel code. Thus, we used
IDTGuard to replace the original pointer value in the IDT with this random pointer value
and checked whether it was detected by IDTchecker. IDTChecker did detect this by showing
that the pointer was pointing to a code different than those in other VMs.

5.2.2. Hooking an Interrupt handler

The interrupt handler can also be patched in order to run malicious code [1]. This
change would not modify the pointer in the IDT but the actual code that is run to handle
an interrupt. In this section, we performed a simple experiment where we used a customized
driver for a simple Programmed IO device [21] that also had an interrupt handler. When the
driver was loaded, the interrupt handler was registered with an interrupt vector. We used
IDT entry (0x3e), which was originally registered with atapi!IdePortInterrupt handler.
We then disabled the IDE Channel to free the system resources, which is then occupied
by the Programmed IO device [21]. We further installed the driver for this device, which
also registered its interrupt handler with vector 0x3e. When we ran the IDTchecker and
compared the IDT’s across other VMs, it showed that the interrupt handler code for vector
0x3e was different than those in other VMs.

5.2.3. IDT manipulation through malware

In this section, we describe the real-world malware and some popular IDT exploitation
techniques we used to further evaluate the effectiveness of the IDTchecker. Malware modified
the pointers in the IDT and the interrupt handler code in order to run their malicious code
which IDT checker successfully detected.

Subverting the Windows Kernel: As pointed out by Skape [8], rootkits that di-
rectly replace IDT entries make a lot of noise and are, therefore, not stealthy. The proof of
concept rootkit solutions that are largely undetectable by common rootkit scanners, how-
ever, rely on overwriting an interrupt handler such as the KiInterruptTemplate routine
pointed by the Interrupt vector. Mxatone et al. [8] demonstrated a multipurpose proof
of concept of attaching keylogging or packet sniffing code via IDT hooking. This process
modifies the pointer in KiInterruptTemplate by searching for the following static code:
“mov edi, <&Kinterrupt>; jmp edi;”, to point to the maliciously crafted Kinterrupt

structure which contains calls to the kernel routines that can gather keyboard strokes or

13

Figure 6: Hooking the Kernel Directly [22]

network packets. The original interrupt handler will still execute after the malicious one
since the malicious code will return to the legitimate Kinterrupt structure. After the mod-
ifications to the Kinterrupt structure, IDTChecker was able to detect the code injection by
KinterruptTemplate pointer modification.

Direct Kernel Hooking: Another proof of concept [22] registers a dummy driver that
hooks interrupt vectors 0x01 and 0x03 to functions that will represent a USB storage de-
vice as a regular disk drive. This proof of concept malware achieves this goal by capturing
calls to IoCreateDevice() that takes a pointer into the DRIVER OBJECT of the newly added
device and replaces the MajorFunction (IRP MJ DEVICE CONTROL) with the malicious func-
tion sitting within the dummy driver. As a result, every system call to the another USB
device driver USBSTOR can be intercepted and monitored. In order to do so, the malware
hooks IoCreateDevice() by inserting instructions into the executable code. Figure 6 is a
breakdown of an IDT hooking function which is called directly from and contained within
the dummy driver. The hookIDT() calling function preservers the old interrupts (0x01 and
0x03) that are about to be hooked.

As seen in Figure 6, after the original IDT has been preserved, it is then safe to unleash
the hooking mechanism which hooks debugging interrupts 0x01 and 0x03. Afterwords, the
original IDT is restored and addresses of newly created hooks are added to the list of hooked
IDT entries.

IDTchecker ran a comparative analysis of two virtual machines, where one of the VMs
(VM1) had registered this malicious driver. The output generated by the IDTchecker illus-

14

Figure 7: Comparison of IDT and Interrupt Handler dumps before and after STrace Fuzen malware infection
(in WinDbg)

trates detection of the changes made to the interrupt 0x01 and 0x03 handler code by iden-
tifying that the dispatcher code size was mismatched. Furthermore, IDTChecker detected
that the offset of the start address for the handler from driver’s base address in infected VM1
had a value of F7C477C0. Keeping in mind that the maximum address range for the kernel
functions is F7C3A000, the address we detected is obviously outside the address range of the
kernel code and furthermore, does not match the value in VM2 8053d4E4, which is inside
the address range of the kernel code. Further examination of the assembly dump provided
by the IDTchecker, points to the expected assembly instructions overwritten by performing
the interrupt hooking and is shown in the figure above.

STrace Fuzen Interrupt Hooking: In this experiment, we used STrace Fuzen [23]
malware, which hooks the IDT on interrupt vector 0x2E. This vector represents the System
Service Descriptor Table (SSDT). When an application needs the assistance of the operating
system via SSDT, NTDLL.DLL issues interrupt 0x2E to transfer from user land to kernel land.
This malware saves the address of the original interrupt handler and changes it to the address
of its own code. When an application makes a request via the SSDT, this hook is called before
the kernel function in the SSDT.

We used two identical VMs that had Windows XP (SP2) running. We ran the malware
on one machine and noticed the changes through WinDbg (an MS Windows debugger) and
then, compared them with the other uninfected machine. Figure 7 shows the results of the
comparison where we noticed that the pointer for the 0x2E vector was modified, along with
the interrupt handler code in the infected machine. IDTchecker detected the modifications
successfully.

5.3. Runtime Performance

This section discusses the runtime performance of IDTchecker when the guest VMs are
idle or exhaustively using their resources. It also discusses the impact of IDTchecker on a
guest VM’s system resources and the memory overhead of IDTchecker in the privileged VM.

15

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

IDTchecker

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Table-Extractor

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Code-Extractor

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Info-Extractor

 0

 0.5

 1

 1.5

 2

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Integrity-Checker

Figure 8: Execution time of IDTchecker (and its components) on different number of VMs when they are
mostly idle.

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

IDTchecker

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Table-Extractor

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Code-Extractor

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Info-Extractor

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Number of Virtual Machines

Integrity-Checker

Figure 9: Execution time of IDTchecker (and its components) on different number of VMs when they are
exhaustively using their resources.

5.3.1. Best and worst case scenarios of IDTchecker

We compare an IDT across a number of VMs and compute the best and worst running
times. In the best case scenario, we kept the guest VMs idle so that IDTchecker would
have all the available system resources. In the worst case scenario, we ran resource intensive
processes that were intended to consume most of the system resources (such as RAM, IO and
CPU) of guest VMs. Given the fact that all the VMs were running on the same hardware,
this case would give IDTchecker fewer physical resources for execution.

Figures (8 & 9) show the runtime performance of IDTchecker and its components. Com-
paring both figures, we find that IDTchecker’s components show similar runtime patterns.
However, in the worst case scenario IDTchecker takes more time to execute. We also find that
Code-Extractor consumed most of the resources. This is because, unlike the Table-Extractor
and the Info-Extractor, the Code-Extractor has to access Guest VMs memory several times
in order to retrieve different chunks of memory corresponding to interrupt vectors in the

16

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
P

U
 i

dl
e

 ti
m

e
(%

)

Runtime (seconds)

 85

 88

 91

 94

 97

 100

 14 15 16 17

 85

 88

 91

 94

 97

 100

 28 30 32
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

F
re

e
 m

em
or

y
(%

)

Runtime (seconds)

Physical memory

Virtual memory

 75

 81

 87

 93

 100

 14 15 16 17

 75

 81

 87

 93

 100

 28 30 32

Figure 10: Inside virtual machine – CPU and memory impact of IDTchecker. Box represents the time span
when IDTchecker was accessing the guest virtual machine’s memory. (The boxes are zoomed-in in the small
graphs).

IDT. For instance, if there are 100 interrupt gates in the IDT, Code-Extractor has to access
memory 300 times. This is because there are three associated memory accesses per interrupt
gate. On the other hand, the Table-Extractor has to access memory only twice; once to
access the IDT and the second time to access the GDT. We also find a linear growth in
the execution time of IDTchecker when we increase the number of VMs. This is because
IDTchecker accesses the VMs sequentially, reading the memory of one VM at a time. This is
the reason that Code-Extractor shows the same behavior as IDTchecker. Integrity-Checker
showed consistent time when the number of VMs was increased. This is because Integrity-
Checker does not access the guest VM’s memory; instead, it only needs to apply simple rules
to the VMs’ data.

5.3.2. Inside virtual machine – IDTchecker’s impact on system resources:

Recall that no component of IDTchecker runs inside the VM. It is for this reason we
assume that there should not be any significant impact of IDTchecker on the guest VM’s sys-
tem resources. Figure 10 shows the processor and memory usage of an almost idle guest VM.
The slight sign of disturbance is caused by a lightweight tool running to monitor the system
resource usage from within the VM. The boxes point out the time frame when IDTchecker
was running on the guest VMs extracting the tables and different memory chunks from VM’s
physical memory. After looking at the graphs, we find that there is no significant perturba-
tion induced by IDTchecker on the guest VM’s processor and memory resources. Thus, we
can conclude that IDTchecker does not have significant impact on the guest VM’s resources.

5.3.3. Memory overhead of IDTchecker

Figure 11 shows the memory overhead of IDTchecker on privileged VM running Fedora
16. There were around 500MB RAM available for IDTchecker since other seven guest VMs
occupied 7GB of memory and around 500MB was occupied by the Fedora. In order to
observe the memory usage of IDTchecker, we kept the machine idle. However, the tool that
we used in the last section for acquiring the stats of the VM’s system resources was running

17

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

F
re

e
 m

em
or

y
(%

)

Runtime (seconds)

Physical memory

Virtual memory

 16

 19

 22

 25

 28

 26 27 28

 16

 19

 22

 25

 28

 41 42 43 44

Figure 11: Memory overhead of IDTchecker on privileged VM. Box represents the time span when IDTchecker
was running in the VM. (The boxes are zoomed-in in the small graphs).

on privileged VM. When we ran IDTchecker, we noticed 10-15MB perturbation, which is
around 2-3 percent of the total available memory. We did not notice any usage of virtual
memory, which is also shown in Figure 11. The perturbation is shown in the boxes and
zoomed-in in the small graphs in Figure 11.

6. Conclusion

In this paper, we presented a comprehensive, rule-based approach, IDTchecker, to check
the integrity of IDTs. Our approach examines the pointers in the IDT tables and the cor-
responding interrupt handler code that the pointers are intended to point to. We evaluated
the effectiveness of IDTchecker by changing pointer values and the interrupt handler code
in the IDT. To achieve this, we ran real-world malware that explicitly modified the pointers
in the table and hooked the code with an interrupt vector using a customized kernel driver.
The results showed that IDTchecker detected all the changes effectively.

We also evaluated IDTchecker’s runtime performance during the best and worst case
scenarios where all VMs were idle or were exhaustively using system resources. In both
cases, we observed a linear growth in the execution time of IDTchecker when we increased
the number of VMs. This is because IDTchecker accesses the VMs’ memory sequentially.
However, in the worst case scenario, IDTchecker took more time to execute because all the
VMs were exhausting system resources, which left less physical resources for IDTchecker to
run efficiently at its full capacity.

We also measured the impact of IDTchecker on guest VM’s system resources (i.e., pro-
cessing and memory usage) by keeping the VM idle and letting IDTchecker access the VM’s
memory through introspection. Since no component of IDTchecker runs inside the VMs, we
did not notice any significant perturbation on guest VM’s system resources during this span
of time. Moreover, we also measured the memory overhead of IDTchecker on privileged VM
and found that IDTchecker required only 10-15MB of memory to run smoothly.

18

IDTchecker is robust in that it runs outside the guest VMs and in case of any compromise
of the guest VMs, an attacker cannot hinder the IDTchecker service unless it can attack the
VMM directly and impact the privileged VM. IDTchecker is able to detect the change in
IDTs even when most of the VMs are compromised. However, it cannot exactly identify
which VMs are compromised. Thus, IDTchecker can be best utilized to detect the first signs
of compromise, which then trigger a resource intensive forensic investigation to find the root
cause of the problem.

Acknowledgment

This work was supported by the NSF grant CNS #1016807.

7. References

[1] Kad, Handling interrupt descriptor table for fun and profit,
http://www.phrack.org/issues.html?issue=59&id=4&mode=txt.

[2] S. Skape, Bypassing patchguard on windows x64,
http://uninformed.org/?v=3&a=3&t=sumry.

[3] Hacking with linux kernel module, http://newdata.box.sk/raven/lkm.html.

[4] Digital signatures for kernel modules, http://msdn.microsoft.com/enus/

library/bb530195.aspx.

[5] Sd, Devik, Linux on-the-fly kernel patching without lkm,
http://www.phrack.org/issues.html?id=7&issue=58.

[6] Volatility, http://code.google.com/p/volatility/.

[7] Volatility plugin, http://code.google.com/p/volatility/source/browse/trunk/
volatility/plugins/linux/check idt.py?spec=svn2273&r=2273.

[8] Mxatone, Ivanlef0u, Stealth hooking : Another way to subvert the windows kernel,
http://www.phrack.org/issues.html?issue=65&id=4.

[9] IDTGuard, http://www.msuiche.net/2006/12/10/idtguard-v01-december-2005-build/.

[10] Intel 64 and IA-32 architectures software developers manual,
http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html.

[11] Xen, http://www.xen.org/.

[12] LibVMI, http://code.google.com/p/vmitools/.

[13] Opdis, http://mkfs.github.com/content/opdis/.

[14] OpenSSL, http://www.openssl.org/.

19

[15] J. Rutkowska, System virginity verifier defining the roadmap for malware detection on
windows system, in: Hack in the Box, 2005.

[16] T. Garnkel, M. Rosenblum, A virtual machine introspection based architecture for in-
trusion detection, in: Symposium on Network and Distributed System Security (NDSS),
2003.

[17] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, C. D. McDonell, Linux kernel integrity
measurement using contextual inspection, in: ACM workshop on Scalable trusted com-
puting, STC 07, 2007, p. 2129.

[18] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, P. Khosla, Pioneer: verifying code
integrity and enforcing untampered code execution on legacy systems, in: Twentieth
ACM Symposium on Operating Systems Principles, 2005, pp. 1–16.

[19] G. Kroah-Hartman, Signed kernel modules, Linux Journal 117 (2004) 48–53.

[20] I. Ahmed, A. Zoranic, S. Javaid, G. G. Richard III, Modchecker: Kernel module integrity
checking in the cloud environment, in: ACM symposium on Applied computing, 4th
International Workshop on Security in Cloud Computing (CloudSec ’12), 2012.

[21] W. Oney, Programming the Microsoft Windows Driver, second edition Edition, Mi-
crosoft Press, New York, 2002.

[22] Hooking the kernel directly, http://www.codeproject.com/Articles/13677/
Hooking-the-kernel-directly.

[23] J. Butler, G. Hoglund, Rootkits: Subverting the Windows Kernel, Addison-Wesley,
Boston, 2005.

20

